English site

大山 陽介







大山 陽介

徳島大学 大学院理工学研究部 数理科学系 数理解析分野


  1. Y. Ohyama, q-Stokes phenomenon of a basic hypergeometric series 1φ1(0 ; a; q, x), J. Math. Tokushima Univ., 50 (2016), 49--60.
  2. Y. Ohyama, Meromorphic solutions to the q-Painlevé equations around the origin, J. Phys.: Conf. Ser. 597, 012063, p.10, April 2015.
  3. Y. Ohyama, S. Okumura, R. Fuchs' problem of the Painlevé equations, Contemp. Math. AMS. 593, 163-178, July 2013.
  4. K. Kaneko and Y. Ohyama, Meromorphic Painlevé transcendents at a fixed singularity, Math. Nachr. 286, Issue 8-9, 861-875, June 2013.
  5. Y. Ohyama and S. Okumura, The Darboux-Halphen-Brioshi systems and non-associative algebras, Algebras Groups Geom. 27, no. 4, 377-389, Dec. 2010.
  6. Y. Ohyama, Special Solutions to the Second q-Painlevé equation, AIP Conf. Proc. 1281 (2010), 1714-1717, Sep. 2010.
  7. Y. Ohyama, Expansions on special solutions of the first q-Painlevé equation around the infinity, Proc. Japan Acad 89, no. 5, 91-92, May 2010.
  8. Y. Ohyama, Analytic solutions to the q-Painlevé equations around the origin, RIMS Kokyuroku Bessatsu B13, 45-52, Oct. 2009.
  9. Y. Ohyama, Monodromy evolving deformations and Halphen's equation, CRM Proceedings and Lecture Notes 47, 343-348, July 2009.
  10. K. Kaneko and Y. Ohyama, Fifth Painlevé transcendents which are analytic at the origin, Funkcial. Ekvac. 50, no. 2, 187-212, Aug. 2007.
  11. Y. Ohyama, Rational transformations of confluent hypergeometric equations and algebraic solutions of the Painlevé equations: P1 to P5, RIMS Kokyuroku Bessatsu B2, 137-150, Mar. 2007.
  12. Y. Ohyama, H. Kawamuko, H. Sakai and K. Okamoto: Studies on the Painlevé equation V, third Painlevé equations of special type PIII(D7) and PIII(D8), J. Math. Sci. Univ. Tokyo 13 No.2, 145-204, Oct. 2006.
  13. Y. Ohyama and S. Okumura: A coalescent diagram of the Painlevé equations from the viewpoint of isomonodromic deformations, J. Phys. A: Math. Gen. 39, 12129-12151, Sep. 2006.
  14. Y. Ohyama, Classical Solutions of Schlesinger equations and Twistor Theory, CRM Proceedings and Lecture Notes 31 61-68, Mar. 2002.
  15. Y. Ohyama, Isomonodromy Deformations and Twistor theory, Contemp. Math. 309, 185-193, Mar, 2002.
  16. Y. Ohyama, Differential equations for modular forms with level three, Funkcial. Ekvac. 44. no. 3, 377-389, Dec. 2001.
  17. Y. Ohyama, Hypergeometric functions and non-associative algebras, CRM Proceedings and Lecture Notes 30, 173-184, Dec. 2001.
  18. Y. Ohyama, Systems of nonlinear equations related to second order linear equations, Osaka J. Math. 33, no. 4, 927-949, Dec. 1996.
  19. Y. Ohyama, Differential relations of theta functions, Osaka J. Math. 32, no. 2, 431-450, June. 1995.
  20. Y. Ohyama, Self-duality and integrable systems, Publ. Res. Inst. Math. Sci. 26, no. 4, 701-722, July 1990.
  21. Y. Ohyama, Monodromy Evolving Deformations and Confluent Halphen’s Systems, Painlevé Equations and Related Topics (Ed. Bruno, A. D. and Batkhin, A. B.), de Gruyter, 129-136, Aug. 2012.
  22. Y. Ohyama, On Particular solutions of q-Painlevé equations and q-hypergeometric equations, Painlevé Equations and Related Topics (Ed. Bruno, A. D. and Batkhin, A. B.), de Gruyter, 247-251, Aug. 2012.
  23. Y. Ohyama, Nonlinear equations on theta constants of genus two, Infinite Analysis,IIAS Reports, No. 1997-001, Jan. 1997, 109—116.