Corrigendum to: “Kernel functions of the twisted symmetric square of elliptic modular forms”

Kohama Hayato and Yoshinori Mizuno

Abstract

We give a list of corrections in the paper “Kernel functions of the twisted symmetric square of elliptic modular forms” appeared in Mathematika 64 (2018), 184–210.

- p. 186, line 12: When $\nu = 0$, r^ν should be understood as $r^0 = 1$ (even if $r = 0$). Similarly, when $\nu = 0$, the following values should be understood as 1: o p. 188, λ^ν in line 16. o p. 188, r^ν in line 2 from the bottom. o p. 189, λ^ν in line 2. o p. 190, $(z + q)^\nu$ in line 9 from the bottom. o p. 190, z^ν and $\left(-\frac{r}{q}\right)^\nu$ in line 6 from the bottom. o p. 190, z^2 in line 2.
- p. 190, $(r^2/2)$ in line 6 from the bottom.
- p. 195, r in line 3.
- p. 187, line 8: add “$a(n, s)$ is holomorphic on the same region.” after “$s \neq 1$.”
- p. 195, line 11: “all $s \in \mathbb{C}$” should be “$\Re s > 1/2$.”
- p. 198 Lemma 10 (2) (ii) and p. 199 Proposition 3 (1) (ii): “$f^1+\eta n$” should be “$f^1+2\eta n$.”
- p. 199, line 15 from the bottom: add “$M = |D_K| = M_1$, $L = 1$ and ” after “In this case,”
- p. 200, line 3: “$\psi(s-k+1+\nu)/2$” should be “$\psi(s-k+1+\nu)/2$”.
- p. 200, line 8: “$e^{-\pi(\nu/2)}(4n+(r^2/N^2))(r^2/N^2-4n)^{-1}$” should be “$e^{-(\nu/2)}(4n+(r^2/N^2))(r^2/N^2-4n)^{-1}$.”

(delete π from the exponent in the power with base e.)
- p. 200, line 10: “$e^{-\pi(\nu/2)}$” should be “$e^{-\nu/2}$.”
- p. 200, line 11: “$K_1 := 2^{s-k+1+(1/2)}\Gamma((s-k+1+1/2))^{-1}$” should be “$K_1 := \pi^{2+(1/4)}2^{s-k+1+(1/2)}\Gamma((s-k+1+1/2))^{-1}$.”
- p. 200, line 9 from the bottom: “$N_1 \mid r$, $N_2 \nmid r$” should be “$\gcd(r, N) = N_1$.”
- p. 204, line 3 from the bottom: Insert the following sentence after the formula of $A(1, \pm 10, s)$;

“Similarly, if $r^2 - 100 = 5f^2$ with some $f \in \mathbb{N}$, then by Proposition 2, Proposition 3 (2) and Lemma 3(a)(2-2), one has

$$A(1, r, s) = \sqrt{5} \frac{\chi_5^*(f)}{(1 + 5^{-s})\zeta(2s)} F^1_{r/5,1}(5^{-s}),$$

$$F^1_{r/5,1}(5^{-s}) = \frac{-\chi_5^*(2r/5)5^{-s}}{1 - 5^{1-2s}} \left(1 - 5^{1-s}(1 + 5^{1-s} - 5^{m+1-(2m+1)s}(1 + 5^{-s}))\right),$$

where m is the integer such that 5^m is the highest power of 5 dividing $f/5$.”

Yoshinori Mizuno
Graduate School of Technology, Industrial and Social Sciences
Tokushima University
2-1, Minami-josanjima-cho, Tokushima, 770-8506, Japan
e-mail: mizuno.yoshinori@tokushima-u.ac.jp

Hayato Kohama
Graduate School of Technology, Industrial and Social Sciences
Tokushima University
2-1, Minami-josanjima-cho, Tokushima, 770-8506, Japan
e-mail: 2h756he9c78gj642s1jnv3@gmail.com